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Revealing Hi-C subcompartments by imputing
inter-chromosomal chromatin interactions
Kyle Xiong1,2 & Jian Ma 2*

Higher-order genome organization and its variation in different cellular conditions remain

poorly understood. Recent high-coverage genome-wide chromatin interaction mapping using

Hi-C has revealed spatial segregation of chromosomes in the human genome into distinct

subcompartments. However, subcompartment annotation, which requires Hi-C data with

high sequencing coverage, is currently only available in the GM12878 cell line, making it

impractical to compare subcompartment patterns across cell types. Here we develop a

computational approach, SNIPER (Subcompartment iNference using Imputed Probabilistic

ExpRessions), based on denoising autoencoder and multilayer perceptron classifier to infer

subcompartments using typical Hi-C datasets with moderate coverage. SNIPER accurately

reveals subcompartments using moderate coverage Hi-C datasets and outperforms an

existing method that uses epigenomic features in GM12878. We apply SNIPER to eight

additional cell lines and find that chromosomal regions with conserved and cell-type specific

subcompartment annotations have different patterns of functional genomic features. SNIPER

enables the identification of subcompartments without high-coverage Hi-C data and provides

insights into the function and mechanisms of spatial genome organization variation across

cell types.
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In humans and other higher eukaryotes, chromosomes are
folded and organized in 3D space within the nucleus and
different chromosomal loci interact with each other1–3. Recent

developments in whole-genome mapping of chromatin interac-
tions, such as Hi-C4,5, have facilitated the identification of
genome-wide chromatin organizations comprehensively, reveal-
ing important 3D genome features such as loops5, topologically
associating domains (TADs)6–8, and A/B compartments4. Speci-
fically, at megabase resolution, chromosomes are largely segre-
gated into two compartments, A and B4,9. Compartment A
regions generally contain open and active chromatin, while
compartment B regions are mostly transcriptionally repressed.
Further analysis showed that these A/B compartment domains
can be inferred from epigenetic status including DNA methyla-
tion and chromatin accessibility, as well as DNA replication
timing10. The separations of B and A compartments in the gen-
ome also have near identical agreement with lamina associated
domains (LADs) and inter-LADs, respectively11,12, suggesting
that A/B compartments have different spatial positions in the
nucleus. More recently, A/B compartment separations have been
observed using other genomic and imaging approaches to probe
the 3D genome13–15.

In Rao et al.5, the A/B compartment definitions were greatly
enhanced using high-coverage Hi-C data generated from the
human lymphoblastoid (GM12878) cell line. Specifically, Rao
et al.5 identified Hi-C subcompartments that divide A/B com-
partments into five primary subcompartments: A1, A2, B1, B2,
and B3. These Hi-C subcompartments show distinct and more
refined associations with various genomic and epigenomic fea-
tures such as gene expression, active and repressive histone
marks, DNA replication timing, and specific subnuclear struc-
tures5. A more recent study based on the TSA-seq technology
further demonstrated that these subcompartments strongly cor-
relate with cytological distance between the chromatin and spe-
cific subnuclear structures such as nuclear speckles and nuclear
lamina, reflecting the spatial localization of the chromatin in the
nucleus16. Therefore, the annotation of Hi-C subcompartments
could be extremely useful to provide complementary perspective
of the 3D genome in terms of its spatial position in cell nucleus
and its functional connections.

Hi-C data from GM12878, which has almost 5 billion mapped
paired-end read pairs, is the dataset with the highest coverage to
allow reliable identification of subcompartments through clustering
inter-chromosomal contact matrices. Unfortunately, when the
same clustering procedure is applied on lower coverage inter-
chromosomal contact maps from most available Hi-C datasets that
typically have 400 million to 1 billion mapped read pairs5, the
inter-chromosomal contact matrices are often too sparse to reveal
clear subcompartment patterns. Recently, a neural network based
method called MEGABASE was developed to predict Hi-C sub-
compartment assignments of chromosome regions with 100 kb
resolution using many epigenomic signals as features without using
Hi-C data17. Based on 84 protein-binding and 11 histone mark
ChIP-seq datasets in GM12878, MEGABASE was trained to pre-
dict the original subcompartment annotations in GM12878 from
Rao et al.5 with over 60% consistency in each subcompartment
compared to the original annotations (except for the
B2 subcompartment). However, most cell types do not have as
many ChIP-seq datasets as GM12878 does and some histone
marks may even exhibit drastically reduced abundance in other cell
lines18. Therefore, MEGABASE has limited application to most cell
types and it is also unclear how MEGABASE would perform in cell
types other than GM12878. Indeed, comparing Hi-C sub-
compartments across different cell types still has not been possible.

Here we develop a computational method called SNIPER, for
nuclear genome Subcompartment iNference using Imputed

Probabilistic ExpRessions of high-coverage inter-chromosomal
Hi-C contacts. We utilize a neural network framework based on a
denoising autoencoder19 and multi-layer perceptron (MLP)
classifier20 that uses moderate coverage Hi-C contact maps,
which are typically available, to recover high-coverage inter-
chromosomal contact maps and predict the subcompartment
labels of genomic regions in 100 kb resolution. A recently
developed method HiCPlus21 used convolutional neural net-
works22 to impute intra-chromosomal chromatin contacts, but as
of now there are no methods to directly impute inter-
chromosomal contacts. We demonstrate that SNIPER can accu-
rately recover high-coverage inter-chromosomal Hi-C contact
maps in GM12878 such that we can reliably annotate sub-
compartments, and can significantly outperform MEGABASE.
We apply SNIPER to additional eight cell lines, including K562,
IMR90, HUVEC, HeLa, HMEC, HSPC, T Cells, and HAP1, to
reveal Hi-C subcompartment changes across cell types for the
first time. We believe that SNIPER is a useful method to offer new
perspectives of genome organization changes with respect to Hi-C
subcompartments in different cell types. Our results can also
facilitate future work to search for molecular determinants that
modulate compartmentalization in different cellular conditions.
The source code of SNIPER can be accessed at: https://github.
com/ma-compbio/SNIPER.

Results
Overview of SNIPER. The overall goal of SNIPER is to use only
moderate coverage Hi-C data (e.g., approx. 500 million mapped
read pairs with approx. 50–70 million inter-chromosomal read
pairs) as input to infer subcompartment annotations (Fig. 1). Rao
et al.5 originally defined subcompartments by using the inter-
chromosomal Hi-C matrix from GM12878, constructed from Hi-
C contacts between odd-numbered chromosomes along the rows
and even-numbered chromosomes along the columns. The
authors used a Gaussian hidden Markov model (HMM) to cluster
on the rows of the inter-chromosomal matrix. Loci in odd-
numbered chromosomes were assigned to five clusters corre-
sponding to the five primary subcompartments. Clusters were
separated into A1, A2, B1, B2, or B3 subcompartments based on
the Spearman correlations between clusters. To define sub-
compartments in even-numbered chromosomes, Rao et al.5

applied the clustering method to the transpose of the inter-
chromosomal matrix.

The SNIPER framework is comprised of two separate neural
networks, a denoising autoencoder19 (Fig. 1b) and a MLP
classifier (Fig. 1c). The autoencoder takes as inputs rows in a
sparse inter-chromosomal Hi-C matrix (in 100 kb resolution) for
genomic regions in odd-numbered chromosomes along the rows
and regions in even-numbered chromosomes along the columns.
The autoencoder outputs dense contacts between a given region
in odd-numbered chromosomes and all regions in even-
numbered chromosomes. At the same time, its encoder outputs
low-dimensional latent variables that represent features in the
sparse matrix which capture dense chromatin contacts (Fig. 1b).
The latent variable compresses high-dimensional genome-wide
inter-chromosomal contacts of each genomic region into a much
lower dimension, and is subsequently input into the classifier that
categorizes the regions into one of five primary subcompartment
classes—A1, A2, B1, B2, and B3 (based on GM12878 annotations)
(Fig. 1c). Note that although Rao et al.5 defined an additional
B4 subcompartment, it is only present and specifically defined in
chromosome 19, occupying less than 0.4% of the genome. We
therefore did not train SNIPER to consider B4. We then train a
separate autoencoder and classifier to annotate regions in even-
numbered chromosomes. We convert Hi-C contacts into contact
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probabilities to mitigate the effects of extreme Hi-C signals (see
Methods section). By using low dimensional representations of
complex genome-wide chromatin contacts, we can predict
subcompartment annotations using a basic multi-layer percep-
tron network. A detailed description of SNIPER is provided in the
Methods section.

Note that GM12878 has very high Hi-C coverage (approx. 5
billion mapped read pairs genome-wide with 740 million inter-
chromosomal read pairs between the odd-numbered chromo-
somes and the even-numbered chromosomes) while other cell
types typically have just a few hundred million read pairs genome
wide with less than 100 million inter-chromosomal read pairs. To
reflect coverage in other cells types, we downsampled the
GM12878 Hi-C dataset to around 500 million read pairs genome
wide by randomly removing 90% (or 95%) of its original reads,
resulting in about 74 million (or 37 million) inter-chromosomal
read pairs between the odd chromosomes and the even
chromosomes. The inter-chromosomal Hi-C matrix from
the downsampled GM12878 data is then used to train the
autoencoder. Hi-C data of lower coverage cell lines can then be
input into the trained networks to infer their dense Hi-C matrices
and subcompartment annotations.

SNIPER can accurately predict Hi-C subcompartments in
GM12878. We first evaluated the performance of SNIPER in
inferring subcompartments in GM12878 using downsampled Hi-
C data because the annotation based on high-coverage Hi-C is
readily available from Rao et al.5. We use confusion matrices to
assess the overall accuracy of SNIPER compared to Rao et al.5

annotations in GM12878 and also show performance differences
in different subcompartments. We define accuracy as the fraction
of 100 kb chromatin regions whose SNIPER annotations match
Rao et al.5 annotations. The neural networks in SNIPER expect
inputs with the same length, but the inter-chromosomal Hi-C
matrix is not symmetric. We cannot simply transpose the matrix
and use a single SNIPER model to predict subcompartment
annotations in both odd and even-numbered chromosomes. We

therefore trained two separate models of SNIPER, one to classify
subcompartments in odd-numbered chromosomes, and one for
predictions in even-numbered chromosomes. The odd-numbered
chromosome model is trained on loci from chromosomes 1, 3, 5,
and 7 and tested on loci in the remaining odd-numbered chro-
mosomes. Similarly, the even-numbered chromosome model is
trained using chromosomes 2, 4, 6, 8, and 10 and tested on the
remaining even-numbered chromosomes.

The SNIPER annotations of A1, A2, B1, B2, and B3 for each
100 kb genomic region in GM12878 match 93.7%, 88.0%, 84.4%,
91.9%, and 93.0% of Rao et al.5 subcompartment annotations,
respectively (Fig. 2a). Using chromosomes 9, 11, 13, 15, 17, 19,
and 21 as the training set for the odd-numbered chromosome
model, SNIPER achieves similarly high accuracy (Supplementary
Fig. 1). The average precision of SNIPER predictions in each
subcompartment also remains high, with areas under the
precision-recall curve (AUPR) of 0.990, 0.956, 0.935, 0.963, and
0.982, respectively (Fig. 2b). In addition, in 10-fold cross
validation, the accuracy of SNIPER remains high with low
variance among training folds (Table 1). Latent variables for all
chromatin regions are divided into 10 partitions, each of which
achieves similar accuracy as compared to Rao et al.5 annotations
(Supplementary Table 1).

Importantly, we found that SNIPER outperforms the baseline
Gaussian HMM and the recently published MEGABASE by using
the subcompartment annotations from Gaussian HMM based on
the full inter-chromosomal Hi-C matrix5 as a benchmark (Fig. 2a,
Supplementary Figs. 2A,B). Table 1 shows that SNIPER
significantly outperforms MEGABASE and Gaussian HMM in
all subcompartments. Most notably, SNIPER accurately annotates
B2 and B3 regions, whereas MEGABASE frequently confuses B2
and B3 (Supplementary Fig. 2b). We also computed the AUPR of
the Gaussian HMMmodel (Supplementary Fig. 3), which is much
worse than the AUPR from SNIPER for all subcompartments (as
compared to Fig. 2b).

We then extended the evaluation by comparing SNIPER and
Gaussian HMM at different read coverage levels based on
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different inter-chromosomal read pairs as compared to the full
coverage inter-chromosomal contact map where there are 740
million read pairs between the odd-numbered and the even-
numbered chromosomes. In Table 2, we show the percentage of

SNIPER and Gaussian HMM annotations at various coverage
levels that match the reference annotations. SNIPER accurately
predicts subcompartment annotations with more stable perfor-
mance at a wide range of coverage levels. SNIPER outperforms
Gaussian HMM when coverage is between 2% and 60% of the
original inter-chromosomal contacts and significantly outper-
forms Gaussian HMM when coverage is at 10% of the original
contacts or lower. Most of the available Hi-C datasets, including
the non-GM12878 cell lines in this study, typically has around
10% of the full coverage of GM12878 (Supplementary Table 2).
This evaluation demonstrates the stable performance of SNIPER,
which is significantly better than Gaussian HMM when the Hi-C
data coverage is moderate or low.

We then compared the prediction from SNIPER with histone
mark ChIP-seq and DNA replication timing data in GM12878
(Fig. 2c) obtained from the ENCODE project23. We determined
enrichment of different functional genomic signals in each
SNIPER subcompartment and Rao et al.5 subcompartment by
following the same procedure in the Supplement Section V.b.2
from Rao et al.5. We also compared the epigenetic mark
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Table 1 Accuracy of predicting GM12878 annotations for
100 kb bins using the baseline Gaussian HMM,
MEGABASE17, and SNIPER (average across 10-fold cross
validation)

Accuracy
Method A1 A2 B1 B2 B3
Gaussian HMM 0.918 0.776 0.681 0.638 0.767
MEGABASE 0.728 0.718 0.614 0.196 0.831
SNIPER (10-
Fold CV)

0.960 0.912 0.861 0.874 0.959

Variance
SNIPER 4.59E

−04
5.28E
−04

3.90E
−04

1.08E−03 2.17E−04
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enrichment at genomic regions where subcompartment annota-
tions from Gaussian HMM and SNIPER trained on low coverage
GM12878 differ from the reference annotations obtained from
fitting a Gaussian HMM on GM12878 with full coverage
(Supplementary Fig. 4). Among such regions, we found that
SNIPER predictions retain more agreement (as compared to
Gaussian HMM predictions) with the reference annotations in
terms of enrichment of functional genomic signals. Overall, we
found that the enrichments with histone marks and replication
timing are very consistent with the results in Rao et al.5 (Fig. 2c).
This further suggests the overall high concordance between the
predictions from SNIPER, which only uses downsampled data
(10% of the original read pairs), and the Hi-C subcompartment
annotations based on the full dataset from Rao et al.5.

SNIPER annotations in other cell types are supported by
genomic and epigenomic data. Because subcompartment
annotations from high-coverage Hi-C data are only available in
GM12878, we cannot directly compare the SNIPER predicted
subcompartments in other cell types to the results based on high-
coverage Hi-C. We therefore specifically focused on functional
genomic data in K562 and IMR90, where a large number of
epigenomic datasets are available, to evaluate SNIPER predic-
tions. Fig. 3a is an example showing that SNIPER recovered
missing contacts from the sparse low coverage inter-
chromosomal contact map of IMR90, revealing much clearer
compartmentalized contact patterns whose boundaries strongly
correlate with shifts in functional genomic data. A1 and A2
regions generally have early replication timing and dense
H3K27ac and RNA-seq signals, whereas regions in B1, B2, and B3
replicate later and have lower transcriptional activities (see Sup-
plementary Fig. 5 and Supplementary Fig. 6). The patterns of
functional genomic signal enrichment in different subcompart-
ments are similar to what we observed from GM12878 (Fig. 2c
and Supplementary Fig. 7). We also compared the subcompart-
ments with chromatin state annotated by ChromHMM24 and
Segway-GBR25, respectively, in multiple cell types. We further
confirmed the generally consistent patterns between sub-
compartments and active/repressive chromatin states (Supple-
mentary Notes, Supplementary Fig. 8, and Supplementary Fig. 9).

In addition, we observed significant shifts of histone mark
signals in 400 kb neighborhoods around subcompartment
boundaries between A2 and B1 (Fig. 3b for results in
GM12878, K562, and IMR90) and other subcompartment
boundaries (see Supplementary Fig. 10). Supplementary Fig. 11
shows the total number of transitions between predicted
subcompartments observed in genomic regions for each of the
nine cell types that SNIPER was applied to. We focus on A2 to B1
transitions here as they are among the most frequent in the cell
types in our analysis, e.g., about six times more frequent than A1
to B1 transitions. Furthermore, A2 and B1 are associated with

euchromatin and facultative heterochromatin, respectively5, and
can both be relatively transcriptionally active. As a result, the
large shift in histone mark signals across their boundaries
signifies SNIPER’s ability to differentiate spatially close and
functionally similar subcompartments. Active marks such as
H3K9ac, H3K27ac, and H3K36me3 are generally more enriched
in A2 than B1 with a dramatic drop moving across the boundary,
consistent with the significantly lower enrichment of active marks
in B1 (see Rao et al.5; Fig. 2d), whereas the facultative
heterochromatin mark H3K27me3 becomes more enriched across
the A2-B1 boundary. These patterns of changes in epigenomic
signals at the boundaries of subcompartments are consistent with
changes in histone mark signals at subcompartment boundaries
shown by Rao et al.5 and more recently by Chen et al.16, and the
average log ratio between two epigenomic signals shown by
Robson et al.26. We also observed changes of histone mark signals
around A2 and B1 boundaries in downsampled GM12878, K562,
and IMR90 using subcompartment annotations from Gaussian
HMM clustering (Supplementary Fig. 12). Compared to what we
observe from the predictions based on SNIPER, the patterns of
signal changes around A2 and B1 boundaries in GM12878 and
IMR90 based on Gaussian HMM are similar. However, signals in
K562 annotated by Gaussian HMM showed little difference
around A2 and B1 boundaries. This observation suggests that
Gaussian HMM may not be appropriate to identify subcompart-
ments with accurate boundaries for all cell types.

We found that genomic regions replicate much earlier in A1 and
A2 subcompartments than in B subcompartments (Supplementary
Fig. 13) in GM12878, K562, and IMR90. In addition, it is known
that the level of histone modification of H3K27ac is associated with
enhancer activities27 and sometimes also transcriptionally active
inter-LADs12. We found that H3K27ac generally has much higher
signal in predicted A1 and A2 than in B compartment regions, and
is virtually absent in predicted B2 and B3 regions (Supplementary
Fig. 13). Higher H3K27ac signals in B1-annotated regions suggest
less transcriptional activity than regions in A1 and A2 but more
activity than B2 and B3. Intermediate levels of transcriptional
activity and increased abundance of H3K27me3 in the predicted
B1 regions are indicative of its association with facultative
heterochromatin12 (see Supplementary Fig. 13 that shows
consistent patterns across cell types).

The recently developed TSA-seq can reveal cytological distance
between chromosomal regions to specific subnuclear structures16.
TSA-seq is a new genome-wide mapping method that provides
cytological distance between subnuclear structures with proteins of
interest and chromatin regions. For example, the SON protein is
preferentially localized at nuclear speckles and lamin B1 is a major
nuclear lamina protein component. In Chen et al.16, it was
reported that SON TSA-seq (which targets nuclear speckles)
showed that transcription hot zones (peaks in SON TSA-seq) are
primarily associated with the A1 subcompartments (mostly for

Table 2 Subcompartment prediction accuracy of the Gaussian HMM and SNIPER at various levels of coverage. SNIPER
outperforms the Gaussian HMM when the inter-chromosomal matrix is below 60% of the original GM12878 inter-chromosomal
read count and the performance is dramatically better at lower coverage levels

Prediction accuracy at different coverage levels
Coveragez 14.8 (2%) 22.2 (3%) 29.6 (4%) 37 (5%) 74 (10%)
Gaussian HMM 46.46% 50.66% 56.51% 57.27% 65.04%
SNIPER 88.91% 88.83% 90.08% 91.05% 92.69%
Coverage 148 (20%) 296 (40%) 444 (60%) 592 (80%) 740 (100%)
Gaussian HMM 88.28% 93.64% 95.85% 97.09% 99.82%
SNIPER 93.71% 94.12% 91.91% 87.69% 84.07%

zThe first number refers to the inter-chromosomal coverage in million read pairs (between the odd-numbered chromosomes and the even-numbered chromosomes) and the number in the parenthesis is
the percentage as compared to the full dataset
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peak summit of high peaks) and A2 subcompartments (mostly for
smaller peaks with lower SON TSA-seq scores). However, the
caveat of the comparison in Chen et al.16 is that the TSA-seq data
are based on K562 cells but the subcompartment annotations used
are in GM12878 from Rao et al.5.

We therefore directly compared SNIPER annotations in K562
with TSA-seq scores (Fig. 3c) to demonstrate the benefit of having
subcompartment annotations in K562. We used SON and
LaminB TSA-seq data that measure the distance to nuclear
speckles and nuclear lamina in K562, respectively (note that TSA-
seq is not available for other cell types studied in this work). We
found that SON TSA-seq signals show significant stratification of
the predicted subcompartments in K562 with more consistency.
Importantly, we further confirmed the observations from Chen
et al.16 that the highest SON TSA-seq peaks are associated with
A1 subcompartments and A2 subcompartments are also close to
the nuclear interior with relatively high SON TSA-seq scores. In
particular, the highest SON TSA-seq decile is almost exclusively
associated with A1 regions in the SNIPER annotations. In
contrast, using Rao et al.5 GM12878 annotations, a significantly
higher portion of the highest SON TSA-seq decile is associated
with B1 regions. 71.65% of the 3 highest SON TSA-seq deciles are
labeled as A1 using the K562 SNIPER annotations, whereas
54.10% are labeled as A1 when using the GM12878 Gaussian
HMM annotations. Therefore, the K562 SNIPER annotations
made the observations from Chen et al.16 even clearer, namely the
highest deciles of SON TSA-seq strongly correlate with

A1 subcompartments. Furthermore, virtually none of the SNIPER
predicted A2 regions are binned into the lowest 2 deciles while
the Rao et al.5 A2 regions are present in all low deciles. A scatter
plot of SON TSA-seq and LaminB TSA-seq percentiles
(Supplementary Fig. 14) shows that almost all subcompartments
tend to cluster better based on SNIPER K562 subcompartment
annotations instead of the original GM12878 subcompartment
annotations. We found that in general SNIPER annotations in
K562 are partitioned into subcompartments with narrower SON
TSA-seq and LaminB TSA-seq signal ranges as compared to Rao
et al.5 annotations in GM12878. These results suggest that the
SNIPER subcompartment annotations in K562 are accurate and
offer a more direct comparison with SON and LaminB TSA-seq
in K562 than the Rao et al.5 GM12878 subcompartment
annotation (which was the approach Chen et al.16 used).

SNIPER facilitates the identification of subcompartment pat-
terns across different cell types. We next applied SNIPER to
predict Hi-C subcompartments in K562, IMR90, HeLa, HUVEC,
HMEC, HSPC, T Cells, and HAP1 (see distributions of sub-
compartments in all cell types in Supplementary Fig. 15). Note
that not all cell types have the same level of Hi-C coverage (see
Supplementary Table 2). We applied the SNIPER model trained
on 10% of GM12878’s original read pairs to K562, IMR90, HSPC,
and T cells and the SNIPER model trained on 5% of the original
read pairs to HeLa, HUVEC, HMEC, and HAP1. Together with
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the subcompartments in GM12878, this allows us to perform a
detailed comparison of subcompartment conservation and
changes across multiple cell types. 100kb genomic regions are
partitioned into 13 conservation states (see Methods section for
detailed definitions) based on the subcompartment annotation
distribution of each region among nine cell types. States are
termed states 1–12 and NC, sorted by ascending entropy of cross
cell type annotations, of which state 1 has the lowest entropy and
refers to genomic regions with the most conserved cross cell type
annotations, states 2–12 gradually increase in entropy and
decrease in conservation, and state NC refers to the dynamic non-
conserved state. States 1–3 occupy large fractions of the genome,
indicating that a large portion of the genome contains relatively
conserved subcompartment annotations (Fig. 4a). Notably, the
A1 and B3 subcompartments appear to be the most conserved
subcompartments across cell types, with about 30% and 40%
representation in the most conserved state 1, respectively. By
contrast, there is less B1 presence in the more conserved states,
consistent with the observations in Rao et al.5 that B1 is asso-
ciated with facultative heterochromatin. The NC state comprised
about 11% of the genome and contained relatively few A1 and B3
regions, suggesting A1 and B3 are likely more conserved across
cell types than other subcompartments.

Information content (see Methods section), H3K27ac ChIP-seq
fold change, and smoothed Repli-seq signals at each region of the
Genome Browser shot (Fig. 4b) show conserved and dynamic
functional genomic patterns across cell types. Similar to
information content of position weight matrices for transcription
factor binding motifs, subcompartment information content
reflects the information gained from annotations across all cell
types in 100kb genomic bins. Genomic regions with high
information content have significantly more conserved annota-
tions across cell types than regions with low information content.
Conserved A2 regions, shown in the purple segment of Fig. 4b,
can be expected to retain conserved annotations and functional
genomic patterns even in cell lines not in our analysis. Less
informative regions (Fig. 4b, yellow and blue) exhibit inconsistent
functional genomic signals. Regions with HeLa-specific A2
annotations (Fig. 4b, blue rectangle) show increased abundance
of H3K27ac signal and much earlier replication timing compared
to other cell lines. These regions are annotated as B1, B2, and B3
in other cell types and correspond to lower H3K27ac signals and
later replication timing.

The amount of information gained in each conservation state is
reflected in the Repli-seq distribution in subcompartment modes
across states (Fig. 4c). For each region in a conservation state, its
cross cell type Repli-seq signals were binned according to the
region’s mode, defined as the most frequent subcompartment
annotation among 9 cell types. We then plotted the violin plots of
Repli-seq signals in each mode of the conservation state. We binned
Repli-seq signals for all other conservation states except states 10,
11, and 12, which contained too few 100 kb regions. We found that
more conserved states show less variance of Repli-seq signals in
each mode because cross cell type predictions are less varied. Less
conserved states such as states 8 and 9 exhibit much higher Repli-
seq variance in each mode, especially B1 and B3. Repli-seq
distributions of all modes virtually overlap in the NC state, further
showing high variance of functional genomic signals in more
dynamic subcompartment regions across cell types. Because Repli-
seq is virtually identically distributed in B2 and B3, the two
subcompartments are merged in Fig. 4c. In addition, we found
strong correlation between the subcompartments conservation
states defined by SNIPER across cell types and the constitutive
early, constitutive late, and developmentally regulated replication
timing domains during ES cell differentiation28 (Supplementary
Notes and Supplementary Fig. 16).

Hi-C reconstructions at genomic regions with cell-type specific
annotations are distinct from the same regions in other cell types.
Fig. 4d shows an example of A2 regions specific to IMR90 that
exhibit significantly more frequent contacts compared to the
same region in other cell types, which are annotated as B3. Taken
together, these results demonstrate that SNIPER provides us with
the capability to reliably compare Hi-C subcompartment
annotations in multiple cell types and reveal cross cell type
patterns of conservation and variation of Hi-C subcompartments.

Conserved and cell-type specific subcompartment patterns
show distinct gene functions. Genomic regions where tran-
scription activity is high in a single cell type may reveal genes that
contribute to unique cellular functions. Here, we focus on both
cell-type specific A1 subcompartments and A2 subcompartments,
both of which tend to have more genes with high transcriptional
activity. We compiled cell-type specific subcompartment anno-
tations across GM12878, K562, IMR90, HeLa, HUVEC, HMEC,
and T Cells and the gene expression profiles. We identified genes
in each cell type that are significantly expressed (see Methods
section) and also belong to any region with a cell-type specific
subcompartment annotation. A background of all annotated
human genes in Ensembl V95 is used. Cell-type specific sub-
compartment annotations can provide a general picture of
functions enriched in specific cell types such as GM12878, K562,
HMEC, and T cells (Supplementary Table 4). Specifically, we
show that significantly expressed genes are associated with
immunoglobulin and B cell differentiation in GM12878, anemia
and abnormal hemoglobin in K562, keratinization and the cor-
nified envelope in HMEC, and a variety of immune system
processes in T cells. However, genes in cell-type specific A1 and
A2 subcompartments in IMR90, HeLa, and HUVEC do not
necessarily produce enrichment that explains cell-type specific
functions. We observe that when we use significantly expressed
genes in A1 and A2 individually in GO analysis, the enriched
terms are similar but some cell-type specific functions are absent
from the results. In addition, as a contrast, we show that the cell-
type specific functional enrichments are weaker when we do not
use cell-type specific A1 and A2 subcompartment annotations
(Supplementary Notes and Supplementary Table 5). We also
found that the subcompartments identified by SNIPER reveal
much clearer cell-type specific functions as compared to the
Gaussian HMM annotations (Supplementary Notes and Supple-
mentary Table 6). These results suggest that cell-type specific
subcompartment annotations from SNIPER show cell-type
function. However, a single cell-type specific region may con-
tain a small number of key genes most strongly associated with
such spatial chromatin localization changes and many genes that
act as passengers that obscure distinct functions and pathways.

GO terms associated with constitutive A1 and
A2 subcompartment annotations may reveal housekeeping
processes required for basic cellular functions. In Supplementary
Table 4 (bottom), the most enriched biological processes from
GO enrichment analysis are related to metabolic processes. The
Bonferroni-corrected p-values of these enriched processes show
that genes in constitutive A1 and A2 regions contain significant
housekeeping functions, which play distinct roles as compared to
genes in cell-type specific subcompartments.

Cross-cell type comparison reveals histone marks and TF
motifs important for subcompartment changes. Our earlier
analysis showed that various types of histone marks are associated
with subcompartments, which are consistent with the original
observations in Rao et al.5. Di Pierro et al.17 later used 11 histone
marks to predict subcompartments in GM12878 (based on the
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reduced MEGABASE model). However, the connections between
histone mark variations and subcompartment changes in differ-
ent cell types remain unclear. The SNIPER annotations gave us
the opportunity to study this across cell types.

Among the cell types that we applied SNIPER to, GM12878,
K562, IMR90, HeLa, HUVEC, and HMEC share histone mark
ChIP-seq data, including H3K27ac, H3K27me3, H3K36me3,
H3K4me1, H3K4me2, H3K4me3, H3K79me2, H3K9ac,
H3K9ac, and H4K20me1. We trained a Random Forest (RF)
classifier from scikit-learn29 based on histone marks to
discriminate between cell-type specific B2 and B3, A1 and A2,
and B1 and A2, given that these are the subcompartment
changes with more subtle differences. An example of a

chromatin region with a cell-type specific subcompartment
annotation is illustrated in Supplementary Fig. 17.

For each region with cell-type specific subcompartment
annotations, we compiled the histone marks of the cell type
whose annotation is different from all other cell types. We used
these histone marks as the input to the RF classifier (see
Supplementary Methods). We identified genomic regions anno-
tated as B2 or B3 in one cell type and annotated as B3 or B2,
respectively, in all other cell types. After training, the RF classifier
is able to distinguish between cell-type specific B2 and B3 regions
in the test set with an average of 83.94% accuracy over 10 training
runs. This is much higher than the accuracy MEGABASE
achieved when using 11 histone marks to discriminate between
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B2 and B3, as shown in Fig. S29 of Di Pierro et al.17. The classifier
consistently found that the most important histone marks that
delineate between B2 and B3 are H3K4me3, H3K36me3, and
H3K27ac. Next we re-trained the RF classifier to distinguish
between cell-type specific A1 and A2, and between cell-type
specific A2 and B1, respectively, achieving an average accuracy of
85.34% and 84.19%, respectively. The most important feature for
distinguishing A1 and A2 is H3K36me3 followed by H4K20me1
and H3K9me3. The most important histone marks for separating
A2 and B1 include H3K36me3, H3K79me2, and H4K20me1.

In addition, we explored whether there are transcription factor
(TF) binding motifs enriched in cell-type specific subcompartments,
which indicate possible roles of certain TF regulators in modulating
subcompartment change globally. Here we focused on cell-type
specific A2 subcompartments as a proof-of-principle. We scanned
motifs using FIMO30 based on the JASPAR31 database to determine
the most enriched TF motifs in each cell type (see Supplementary
Methods). All enriched motifs with Bonferroni-corrected p-values
less than 0.05 are sorted by each motif’s fold change over its
background frequency. We define fold change as the frequency of
the motif in DNase-seq peaks in cell-type specific A2 regions divided
by the frequency of the motif in DNase-seq peaks in all regions
(Supplementary Methods). The motifs with the 20 highest fold
change in each cell type are shown in Supplementary Fig. 18.
Notably, TFAP2B and TFAP2C, which belong to the activating
enhancer-binding protein family, are enriched in cell-type specific
A2 regions in K562, HeLa, HUVEC, and HMEC. These enriched TF
motifs suggest that the corresponding TFs in different cell types may
play roles in cooperatively modulating global spatial localization of
the A2 subcompartment.

Taken together, the SNIPER annotations facilitate the
identification of important histone marks and TF regulators
associated with cell-type specific subcompartment changes
globally. These results may pave the way for further experimental
validations to identify possible molecular determinants and
sequence-level features that modulate compartmentalization.

Discussion
In this work, we introduced SNIPER, a computational method
that imputes inter-chromosomal contacts missing from sparse
Hi-C datasets and predicts subcompartment annotations at 100kb
scale across multiple cell types. We found that SNIPER annotated
subcompartments in the GM12878 with high accuracy and out-
performed a state-of-the-art method, MEGABASE. In GM12878,
K562, IMR90, HeLa, HUVEC, HMEC, HSPC, T cells, and HAP1,
we showed that SNIPER predictions correlate well with functional
genomic data including histone marks, replication timing, RNA-
seq, and TSA-seq. Genomic regions with conserved SNIPER
annotations across these nine cell types occupy a significant
portion of the genome (21.87%) and shared similar abundance of
epigenomic signals. Regions with constitutive A1/A2 annotations
are generally associated with housekeeping functions and path-
ways. Cell-type specific A1/A2 annotations correlate with biolo-
gical processes specific to some cell types.

SNIPER is able to achieve accurate subcompartment annotations
in cell types with inter-chromosomal Hi-C coverage as low as 15
million read pairs. In this study, Hi-C data for different cell types
typically have more than 15 million inter-chromosomal Hi-C read
pairs, between 50 million and 110 million (Supplementary Table 2,
suggesting that the SNIPER subcompartment predictions are
accurate. Compared to GM12878 annotations in Rao et al.5, we
only need approximately 50 times fewer Hi-C reads to reliably
annotate subcompartments using SNIPER. Therefore, SNIPER has
the potential to significantly reduce the cost of Hi-C experiments to
analyze subcompartments across many different cellular conditions.

The Hi-C subcompartment predictions from SNIPER can be
compared to results based on other analysis approaches and
datasets. For example, we expect that the SNIPER predictions of
Hi-C subcompartments can be used to further validate and
compare with results from polymer simulations32,33, 3D genome
structure population modeling34,35, and regulatory communities
mining based on whole-genome chromatin interactome and other
molecular interactomes in the nucleus36,37. In addition, recently
published new genome-wide mapping methods13,14,16 may pro-
vide additional training data other than Hi-C, as well as experi-
mental data validation to improve our method.

Currently SNIPER is limited by its training data, which con-
tains a small fraction of the inter-chromosomal mapped read
pairs from the original Hi-C reads in GM12878. The Hi-C cov-
erage of other cell lines tends to vary, which can impact the
overall accuracy when applied to some cell lines. As a result,
SNIPER could incorrectly annotate some regions in a cell line if
Hi-C coverage is too high or too low, although our extensive
evaluation reveals that the performance of SNIPER is highly
stable (Table 2). Large-scale structural variations in the genome
may also have an impact on subcompartments but our analysis
based on the cancer cell lines K562 and HeLa in this work sug-
gests that the impact may not be significant (see Supplementary
Fig. 7 which shows similar enrichment patterns of functional
genomic data as compared to GM12878). We believe that this is
mainly due to the robustness of the autoencoder embedding of
inter-chromosomal contact matrices used in SNIPER. However,
further work is required to study the effects of structural varia-
tions and copy number alterations on specific loci in terms of
subcompartment changes, which may be of particular importance
in analyzing cancer genomes. In addition, the ratio between intra-
chromosomal and inter-chromosomal reads can vary across cell
lines, which we did not explicitly control for. This ratio could
exhibit high variance across different cell types and influence the
accuracy. Future work should make SNIPER more coverage
invariant and produce consistent annotations regardless of the
Hi-C coverage of its inputs.

The Hi-C subcompartment annotations used in SNIPER lar-
gely rely on the original annotations in GM12878 from in situ Hi-
C from Rao et al.5. It remains to be explored to improve SNIPER
for a wider range of experimental protocols for chromosome
conformation. Although the results in this work demonstrate that
these subcompartment definitions may well represent primary
subcompartments in many cell types, it is also possible that some
cell types may have their distinct subcompartment organizations.
Future work can be performed to train SNIPER to categorize
genomic regions into different sets of subcompartments not
limited to the five primary subcompartments used in this work.
We made initial efforts to train a SNIPER model based on wild-
type HCT116 and apply to cohesin-depleted HCT116 based on
the Hi-C data from Rao et al.38, demonstrating the capability of
SNIPER to analyze cell types whose Hi-C contact patterns are
more different than GM12878 (see Supplementary Notes and
Supplementary Fig. 19 and Supplementary Fig. 20).

From the GO analysis, the inability to reveal cell-type specific
functions in some cell types suggests more work should be done to
determine important genes in facultative subcompartment regions
that are most significantly associated with cell-type specific spatial
localization and function. It is indeed a challenging and intriguing
question to search for the molecular determinants that modulate
changes in compartmentalization as many genes are correlated
with each other in the entire subcompartment domain. Earlier
work identified specific genes whose activities are associated with
chromatin targeting to certain nuclear structure (e.g., Hsp70
transgene39). Recently Falk et al.40 also postulated the roles of
molecular determinants for the global changes of chromatin spatial
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compartmentalization. However, our analysis on potentially
important TF regulators and histone marks for cell-type specific
subcompartments provides promising opportunity to further nar-
row down the search space for molecular determinants that
modulate subcompartment variation across cell types. In addition,
it is possible to develop predictive models based on SNIPER sub-
compartments to prioritize important sequence features, which can
be validated by rewiring experiments. Overall, our work demon-
strated that SNIPER has the potential to become a useful tool to
offer new perspectives of 3D genome organization changes in
different cell types and cellular conditions.

Methods
The denoising autoencoder for inferring high-coverage inter-chromosomal Hi-
C contacts. We aim to recover missing contacts from sparse inter-chromosomal
Hi-C contact maps by constructing a denoising autoencoder19 (Fig. 1b), which uses
rows of the downsampled Hi-C contact probability matrix (see later section) in
GM12878 as inputs, and targets the corresponding rows of the dense matrix. Here
we use inter-chromosomal Hi-C contacts instead of intra-chromosomal contacts
because subcompartment-specific patterns are much more visually distinct in the
inter-chromosomal Hi-C matrix as compared to the intra-chromosomal Hi-C
matrix, greatly facilitating subcompartment identification (see Supplementary
Notes and Supplementary Fig. 21). Each row of the matrix is a vector of contact
probabilities between one locus in an odd (or even) chromosome and all loci in the
even (or odd) chromosomes. The denoising autoencoder in SNIPER contains a
total of 9 sequential layers with N loci , 1024, 512, 256, 128, 256, 512, 1024, and N loci
neurons, respectively, where N loci refers to the number of rows or columns in the
input contact matrix. Layers with N loci neurons are the input and output layers, the
layer with 128 neurons is the latent layer, and the remaining layers are hidden
layers. The autoencoder network is trained using a moderate coverage Hi-C matrix
obtained by randomly removing 90% of the original GM12878 Hi-C read pairs to
reflect the sparsity and coverage levels of other cell types. We input a subset of N
total rows into the input layer of the autoencoder. Its output layer targets corre-
sponding rows in the high-coverage Hi-C matrix. The layers of the encoder and
decoder, pertaining, respectively, to the layers before and after the latent layer of
the autoencoder, contain 14–15 million parameters, approximately 10% of the
N ´N loci � 180 million sparse inputs in the training matrix. The 128 dimension of
the latent layer limits the number of parameters in the autoencoder to approxi-
mately match our downsampling ratio of 1:10, and enables the downstream clas-
sifier to accurately predict subcompartment annotations.

Linear transformations to compute neural layer outputs. We developed a
denoising autoencoder that is comprised of linear layers with neurons whose
activations are computed by:

ziðxiÞ ¼ giðWixi þ biÞ ð1Þ
where zi is the activated output of layer i, xi is the n-dimensional input to layer i,
Wi is the m ´ n-dimensional weight matrix (where m is the layer’s output
dimensionality) of layer i, bi is the m-dimensional bias vector of layer i, and gi is
the activation function applied element-wise to the output vector for layer i.

Nonlinear activation to promote separability and consistency of autoencoder
outputs. We apply rectified linear unit (ReLU) activation41 to the hidden layers:

ReLU ðzÞ ¼ z ðz> 0Þ
0 ðz � 0Þ

�
ð2Þ

where all non-positive values in the output vector z are set to 0 to introduce
sparsity. Sparse neural activation is less entangled, more linearly separable, and
more efficiently propagates information throughout the network. In addition,
ReLU has been shown to be suitable for naturally sparse data42.

Of the hidden layers, those with 1024 and 256 neurons are forwarded into 25%
dropout layers to reduce overfitting43. The latent and output layers are activated
linearly and sigmoidally, respectively, with no dropout:

σðzÞ ¼ 1
1þ expð�zÞ ð3Þ

where the values in the activated output σðzÞ are constrained between 0 and 1 as
the exponential converges to 0 and 1 (as values in a layer’s output z go to �1 and
þ1). The latent layer is linearly activated to maximize the encoding space that
latent variables can occupy. The output layer is sigmoidally activated to match the
range of values in the input probability matrix.

Binary cross-entropy to optimize the autoencoder. We use binary cross-entropy
(BCE) loss to assign weights to samples whose autoencoder output values deviate
significantly from corresponding target values:

θ̂ ¼ arg min
θ

�
XN
i¼1

yTi logðŷiÞ þ ð1� yiÞT log 1� ŷi
� �� �( )

ð4Þ

where the autoencoder parameters θ are optimized to minimize the cross entropies
between model outputs ŷi and target outputs yi for all training inputs

i 2 f1; ¼ ;Ng. The autoencoder can also be optimized using mean-squared error
loss with little difference in performance44.

For implementation, gradients of the weights and biases in the model are
computed using backpropagation45 and weights are updated using RMSProp46.
The autoencoder is trained for 25 epochs using a batch size of 32 and learning rate
of 0.001.

The training set contains the first 7000 rows in the contact probability map,
which includes genomic loci in chromosomes 1, 3, 5, and 7, occupying about 51%
of all loci in odd-numbered chromosomes. The remaining rows in the contact
probability map form the test set. We found that using different sets of
chromosomes did not significantly affect the recovery of high-coverage Hi-C data
and the annotation of subcompartments (Supplementary Fig. 1). In addition, the
autoencoder is re-trained using even-numbered chromosomal regions as training
inputs. This new training set includes loci in chromosomes 2, 4, 6, 8, and 10 and
occupy about 52% of loci in even-numbered chromosomes. We transpose the
downsampled Hi-C matrix, compute its probability maps, and follow the same
training process, targeting the transposed high-coverage Hi-C probability map. The
re-trained autoencoder model outputs the same Hi-C map as the initial model
(Supplementary Fig. 22). The size of the input and output layers is adjusted to
equal the number of contacts between each even-numbered chromosomal region
and all odd-numbered regions.

The classifier for predicting Hi-C subcompartment annotations. We developed
a multilayer perceptron model with two hidden layers to classify latent repre-
sentations of inter-chromosomal contacts into subcompartment assignments
(Fig. 1c). The MLP network contains layers with 128, 64, 16, and 5 neurons. The
128-neuron layer pertains to the input layer, the 64-neuron and 32-neuron layers
are the hidden layers, and a 5-neuron layer is the output layer (corresponding to
five primary subcompartments). The network is trained using the latent repre-
sentations of inter-chromosomal contacts and the corresponding
GM12878 subcompartment labels from Rao et al.5. We then input the 128-
dimensional representations of genome-wide contacts in other cell types into the
trained classifier to infer their subcompartment annotations.

Sigmoid activation is applied to the input latent variables, limiting input values
between 0 and 1 and mitigating bias towards high numerical inputs. We apply
ReLU activation to the output of each hidden layer, which will subsequently be
forwarded to 25% dropout layers. The output layer contains 5 neurons (each
representing a possible subcompartment annotation) which are activated with
softmax to ensure that subcompartment probabilities summed to 1:

σðzcÞ ¼
expðzcÞPC
j¼1 expðzjÞ

ð5Þ

where the exponential activation of a class c, expðzcÞ, is normalized by the sum of
exponential activation across all C classes,

PC
j¼1 expðzjÞ. The output likelihoods

indicate the most likely annotation of a 100 kb genomic bin.
The training set is balanced (see Methods below) to ensure that each

subcompartment is equally represented in the training set. Our classifier uses a
balanced set of latent representations of the same loci used to train the autoencoder
as inputs and targets their corresponding subcompartment annotations y based on
high-coverage Hi-C in Rao et al.5. We validated the model by comparing the
predicted annotations of the latent variables of the remaining loci to the Rao et al.5

annotations. The model is optimized using categorical cross-entropy loss between
predicted and target outputs:

LMLPðy; ŷÞ ¼ �
XN
i¼1

X
c2C

yi½c�log ŷi½c� ð6Þ

where ŷ is the predicted output, y is the target output, and c 2 C are the possible
output classes. The loss function sums over the class-specific entropy loss
yi½c�log ŷi½c� for all classes in each training sample i 2 f1; ¼ ;Ng. The weights in
the classifier are updated by computing gradients of the loss function with respect
to the weights:

θ̂ ¼ arg min
θ

LMLPðy; ŷÞ ð7Þ
where θ is the set of model weights. Each epoch’s learning rate is adjusted using
RMSProp46. Two independent classifiers are trained to annotate regions in odd-
numbered and even-numbered chromosomes.

Converting Hi-C contact maps into Hi-C contact probabilities. We converted
Hi-C contacts into contact probabilities to mitigate the effects of extreme Hi-C
signals and enable neural networks to use binary cross-entropy loss. Eq. 8 is applied
element-wise to an inter-chromosomal Hi-C map, returning a matrix of contact
probabilities Pij constrained between 0 and 1.

Pij ¼ exp � 1
Cij

 !
ð8Þ

where Cij refers to the contact frequency between genomic loci i and j. Contacts
probabilities with values constrained between 0 and 1 allow the weights of a neural
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network to be optimized using BCE loss instead of mean-squared-error (MSE) loss
and mitigate the effects of extreme outliers. High frequency chromatin contacts can
disproportionately influence activation in a neural network with linear neurons,
leading to incorrect chromatin subcompartment annotations and a less robust
neural network. Even after log-normalization in Rao et al.5, SNIPER can still
become skewed by the logarithms of extreme values. Furthermore, the value range
of the input exceeds the ð0; 1Þ range and pushes SNIPER to compute gradients
derived from MSE loss. MSE loss optimizes for mean-squared distance between
network outputs and targets, which can result in regression to the mean of the
targets. Using BCE loss retains Hi-C contact patterns in the autoencoder output.
SNIPER’s goal is to capture contact frequency patterns in order to infer sub-
compartment annotations, making optimization for patterns far more important
than optimizing for mean-squared distance. In addition, extreme outliers in the
contact matrix will have corresponding contact probabilities that converge to 0 or
1, values which will introduce much less bias into the autoencoder. While SNI-
PER’s inputs could also be constrained between 0 and 1 by applying a sigmoid
function to the input layer activation, the input would have to be further balanced
by training an additional set of weights and biases.

Probability maps were computed for cell types GM12878, K562, IMR90, HeLa,
HUVEC, HMEC, HSPC, T-Cells, and HAP1. Because the Hi-C coverage of
GM12878 is much higher compared to the other cell types, we simulated the
sparsity of the Hi-C maps of other cell types by downsampling GM12878’s inter-
chromosomal matrix by 1:10 (and in some cell types by 1:20) and computing its
downsampled probability map. The downsampled probability matrix serves as the
training input for the SNIPER autoencoder and GM12878’s dense matrix serves as
its target output during training.

Training set balancing. Before training the classifier, the training set was balanced
so that each subcompartment was equally represented to remove bias towards
specific subcompartments. We set the number of samples per subcompartment to
be a number N that is greater than the number of regions in the most common
subcompartment in the GM12878 training set. We then define an array B corre-
sponding to the balanced training set containing 5 ´N training samples–N samples
per subcompartment.

For each of the five primary subcompartments c, we randomly sample two
latent variables x and y of chromatin regions that belong to subcompartment c. We
subsequently compute r, a vector novel to the training set whose values lie at a
random point in between the values x and y, i.e.,

r ¼ x þ ðy � xÞ ´ rand ð0; 1Þ ð9Þ
where rand ð0; 1Þ is a random variable sampled from a uniform distribution
between 0 and 1. We then append r to B and repeat random sampling for N � 1
iterations. N random samples are then taken for each of the remaining
subcompartments.

Methods of comparing SNIPER results in different cell types. Transition of
histone marks near subcompartment boundaries. Epigenomic marks can serve as
indicators of the overall accuracy of predicted annotations, even though they are
not perfectly predictive of subcompartment state. We compiled histone marks
ChIP-seq fold change in genomic regions within 400 kb of subcompartment
boundaries, defined as nucleotide positions where subcompartment annotations of
adjacent 100 kb chromatin regions are different.

Conserved and dynamic subcompartment annotations across multiple cell types.
In this work, we applied SNIPER to nine cell lines—GM12878, K562, IMR90,
HeLa, HUVEC, HMEC, HSPC, T cells, and HAP1—to determine regions with
more conserved or more dynamic subcompartment annotations across multiple
cell types. We divide subcompartment annotations in thirteen conservation states
based on the entropy of each 100 kb region cross cell type annotations as follows:

Si ¼
XC
c¼1

�pi;clogpi;c

� �
ð10Þ

pi;c ¼
PN

j¼1δðai;j; cÞ
N

ð11Þ

where Si is the total entropy of region i subcompartment annotations, summed
over the entropy of all C subcompartments. The fraction of subcompartment c at
region i, pi;c, is computed by counting the number of occurrences of

subcompartment c over all N cell types,
PN

j¼1δðai;j; cÞ, and dividing by the total
number of cell types N . δðai;j; cÞ ¼ 1 if the annotation ai;j of cell type j is equal to c
at region i.

Because annotations are discrete, Eqs. 10 and 11 yielded 23 possible entropy
values, each corresponding to a unique distribution of annotations across cell types.
Of these 23 states, 11 are associated with fewer than 5 out of 9 cell types sharing the
same subcompartment annotation. The 11 states without a majority
subcompartment are merged into a single non-conserved (NC) state. We sort the
remaining 13 states in order of entropy, with the lowest entropy state 1 denoting
the most conserved cross cell type regions, and the higher-numbered states
denoting less conserved and more dynamic regions.

To represent subcompartment conservation and dynamics, we computed
information content of each 100 kb region. Information content is computed
similar to entropy, but normalizing subcompartment-specific fractions by a
background probability within the logarithm term:

ICi;c ¼ pi;clog
pi;c
qc

� �				
				 ð12Þ

where ICi;c is the information content of subcompartment c at region i, pi;c is
computed in Eq. 11, and qc ¼ 0:2 is the background probability of subcompartments
assuming uniform subcompartment distribution. High information content
corresponds to regions with more conserved annotations while low information
content corresponds to more dynamic regions across cell types.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
The Hi-C data of GM12878, K562, IMR90, HeLa, HUVEC, and HMEC were obtained
from Rao et al.5 in GEO accession GSE63525

The Hi-C data of HSPC was obtained from Joeng et al.47: https://s3.amazonaws.com/
hicfiles/external/goodell/HSPC.hic

The Hi-C data of T cells was obtained from Joeng et al.47: https://s3.amazonaws.com/
hicfiles/external/goodell/tcell.hic

The Hi-C data of HAP1 was obtained from Sanborn et al.32: https://hicfiles.s3.
amazonaws.com/hiseq/hap1/in-situ/combined.hic

We used the Juicebox tool48 to extract 100 kb inter-chromosomal contacts from .hic
files. Note that the Hi-C data of HSPC, T Cells, and HAP1 are only accessible using
Juicebox.

The GM12878 .hic file was created by concatenating the read pairs text files of
HIC001–HIC029 found in GEO accession GSE63525) into a single read pairs file and
using the Pre function in Juicer49. The processed input Hi-C data used in our analyses
can be found at: https://cmu.app.box.com/s/n4jh3utmitzl88264s8bzsfcjhqnhaa0/folder/
86847649053/

Of the included files, GM12878_combined.hic is the high-coverage Hi-C data used for
training.

GM12878_combined_<ds>.hic are the downsampled GM12878 Hi-C data where <ds>
specifies the downsample level. For example, 0.1 denotes a dataset with 10% of the
contacts in GM12878_combined.hic. Pre-trained SNIPER models for downsampling
rates 0.02, 0.03, 0.04, 0.05, 0.1, 0.2, and 0.4 can be found at: https://cmu.app.box.com/s/
n4jh3utmitzl88264s8bzsfcjhqnhaa0/folder/86849512020/

All annotations in genome assemblies hg19 and hg38 can be found at: https://cmu.app.
box.com/s/n4jh3utmitzl88264s8bzsfcjhqnhaa0/folder/86847603885

All datasets used in this work, including Hi-C data, histone mark ChIP-seq data, and
Repli-seq data, are listed in Supplementary Table 8.

All other relevant data is available upon request.

Code availability
Source code and documentation on how to train and apply SNIPER can be found at:
https://github.com/ma-compbio/SNIPER
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